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A MATHEMATICAL FRAMEWORK FOR IMAGE ANALYSIS

ABSTRACT. The results reported here were derived from the research project "A Mathe-

matical Framework for Image Analysis" supported by the Office of Naval Research, contract

N00014-88-K-0289 to Brown University. A common theme for the work reported is the use

of probabilistic methods for problems in image analysis and image reconstruction. Five

areas of research are described: rigid body recognition using a decision tree/combinatorial

approach; nonrigid body recognition using deformable templates; the construction of two

and three dimensional shape models for complex recognition and interpretation tasks; three

dimensional shape reconstruction; and texture analysis.

"1. INTRODUCTION

Our recent work has focused on "high level" computer vision. The mathematical models in

this context are generally global ones (designed to embody global regularities), in contrast

to lattice-based random field models (designed first to capture more local regularities),

which pervaded much of our earlier work. Still, the global models build heavily on what

we have learned from earlier research concerning, for example, the power and flexibility of

probabilistic models built up from specifications of low-order, local (Markovian) dependence.

New mathematical issues arise in the formulation and analysis of high level computer

vision problems. A central issue concerns representation-the association of an object with a

mathematical model which incorporates essential invariant features of the object and which

is flexible enough to represent different instances or presentations of the object. Another

important issue concerns decision procedures for recognition-what are optimal strategies

for making a set of measurements (tests) on an observed image and for using the outcomes

to infer the presence or absence of an object and its classification.

Following this introduction, the report is organized into five sections (Sections 2

through 6). The next section, Section 2, discusses problems related to the recognition

of rigid objects. We have recently implemented algorithms for character recognition in

highly degraded environments and for 3D object recognition using range data. The imple-

mentation per se motivates mathematical questions of broader interest. In particular, we

describe the use of relational templates for invariant rigid object representation, the use

of so-called "interpretation guided segmentation" and its potential connection to statistical

hypothesis testing, and relations between coding theory, sequential decision theory, and

optimal decision procedures.
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Section 3 introduces deformable templates for the modeling of nonrigid one-dimen-

sional objects. This work has been guided by two application areas: recognition of coronary

arteries in X-ray images of the heart (arteriograms) and handwritten character recognition.

The one-dimensional nature of the models makes the use of dynamic programming feasi-

ble for the computation of solutions of global optimization problems. Formally, these de-

formable templates are examples of hidden Markov models, which have been much studied

and successfully used in speech recognition. Part of the research described here concerned

the theoretical issue of identifying the class of processes that can be approximated by hid-

den Markov models. The main result, that hidden Markov models are provably universal,

is also discussed in Section 3.

Section 4 describes generic aspects of deformable template models and discusses how

they have been and might be implemented for higher dimensional structures, such as surfaces

and volumes in JR3 . This work has been largely motivated by the need for global models

for structures such as biological objects, objects which at the same time exhibit common

global regularities and significant variation from observation to observation. For example, a

human heart has a well-determined global structure, but varies in form from one individual

to another, or even for a single person, varies significantly in shape from one point in a

cardiac cycle to another. One of the mathematical issues in this area concerns convergence

to a desired equilibrium distribution of a temporal random process, modeled as a solution of

a stochastic differential equation, for which either the state space has uncommon structure

(e.g., for jump-diffusion processes) or for which paths through the state space are constrained

by a particular algorithmic implementation.

Section 5 discusses the use of Markov random field (MRF) models for recovery of in-

termediate level structure in a scene Motivating problems include (i) "shape from shading"

for visible light images and (ii) construction of surface maps from synthetic aperture radar

(SAR) imagery. These are inherently ill-posed problems where MRF models have shown

promise as a systematic approach to regularization.

Finally, in Section 6 we discuss the application of MRF's and closely relat.d tu IS,

to texture analysis. Accesion For
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2. RIGID BODY RECOGNITION AND COMBINATORICS

This section is composed as follows. We first provide a statement of the invariant rigid

object recognition problem, together with examples of applications and a discussion of

the important heuristic issues, such as combinatorial complexity and focusing. We then

describe an algorithm, previously developed in the contexts of optical character recogni-

tion and three-dimensional object recognition with range data. This algorithm embodies

a particular recognition strategy that we have explored from an applied and algorithmic

viewpoint. Whereas it does addresses the central difficulties of the problem, it does so

in a somewhat ad hoc manner, and we believe a satisfactory mathematical understand-

ing is lacking. Consequently, we discuss in the final section (2.3) a theoretical framework,

starting from "first principles" and mathematical ideas in coding theory, decision theory,

and in nonpaxametric statistics, within which the algorithm above may be regarded as an

approximation. Some of fundamental mathematical issues treated in §2.3 are the following:

(1) Feature Selection. This refers to the problem of choosing what functions of the im-

age data will be used to make decisions, or equivalently, what are efficient object

representations.

(2) Optimal decision protocols. This includes (i) Computing the best order in which to

accumulate information (given a class of features) during the actual search, where,

for example, performance is measured by the expected decision time. (We refer to

this as the Twenty Questions Problem for reasons that will become clear later on.)

This problem is at the heart of our mathematical investigation. (ii) Determining how

to prune the list of active "hypotheses" as information is assembled, for example in a

manner consistent with limits on type I errors (failed detections) and type II errors

(spurious confirmations). Here, one must assume a model for object placement and

for the image formation process, especially the noise statistics.

2.1 Problem Statement and Heuristics. Consider the following recognition problem,

one that living organisms solve every day. We are given a list of 2D or 3D "objects"; for

example, the letters of the alphabet, a collection of cars and trucks, or an assortment of

machine parts or manual tools. The objects are regarded as rigid and represent particular

instances of the given shape class; thus, for example, the letters are represented by a par-

ticular font, the vehicles are specific makes and models, and so forth. The objects are then

arbitrarily positioned in 3-space (or in 2-space if they are two-dimensional, with respect

to rotations and translations, and this "scene" is then imaged by an ordinary camera or

perhaps by a range finding device. The scene may contain multiple objects, each in multiple
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aspects; some objects may be partially occluded by others or by "clutter," such as ioliage or

other "background" objects. In addition, there may be "noise," artifacts, or other degrading

effects caused by the way in which the scene was illuminated and sensed. The goal is then

to construct a list of those objects present in the scene (or perhaps specify the locations at

which objects occur) based on the image data and (exact) shape information about the ob-

jects, e.g., convenient analytic representations. This is the problem of rigid body invariant

object recognition. It has been widely studied in the computer vision community and there

are many papers related in one way or another to the algorithmic approach we describe

below. Whereas we do not claim to perceive the problem in an entirely original fashion,

the mathematical framework we present does appear to be new. In fact, to our !:nowledge,

no convincing theoretical model exists either for the many heuristic search algorithms dedi-

cated to special cases, such as optical character recognition (OCR), or for the nature of the

biological solution.

We should emphasize the distinction between rigid and nonrigid (or deformable) ob-

jects, which are treated in other sections of this report. Evidently, the problem of nonrigid

invariant object recognition is generally more difficult since, in addition to the multitude

of representations induced by spatial positioning, there are the additional ambiguities as-

sociated with the varying intrinsic shapes of individual objects. (To appreciate the latter

complexities, one has only to imagine the number of ways in which people write the letter

"A" or the amount of variation within biological shapes such as leaves and hands.) In

our problem the individual patterns exhibit no variability in shape and hence there is no

probabilistic model for the shape classes. Still, the rigid body problem is quite challenging

because we wish to solve it in highly degraded environments, including substantial degrees

of noise, clutter, and variations in lighting.

There are two particular cases we shall use for illustrative purposes: they are rep-

resentative of the problems encountered and of our practical experience in this area. The

first is optical character recognition, in which the objects are the thirty-six alphanumeric

characters and the images are ordinary visible light pictures obtained with a video cam-

era. One specific application we have in mind is the automatic recognition of identification

characters on silicon wafers from high magnification photographs; see Figure 2.1. The sec-

ond case involves three-dimensional objects consisting basically of planar or near planar

surfaces. To simulate this situation, we have constructed "objects" by randomly generated

parallelepipeds and also constructed "scenes" and corresponding range images by randomly

positioning these objects in space and computing the appropriate depth values from a ref-

erence point; see Figure 2.2 for one such example. Potential applications include industrial
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robotics and inspection, and the automated recognition of military targets, such as ships

and tanks in infrared and laser radar imagery.

Figure 2.1. Silicon Wafer ID

The methodology we are exploring proceeds from thle following assumptions and ob-

servat ions:

1. The most conceptually simple and straightforward approach would be to store a

library of exact representations of all objects in all potential aspects and then search in-

dividually for these object-aspect combinations by some form of template matching. For

example, given a reliable detection algorithm, the positions of potential objects could be lo-

cated and, in principle, thle matching could be done very effectively with optical correlators.

Htowever, there are several problems wvith this "brute force" approach. First, the enor-

mous number of potential object-aspect pairings ("signatures") might impose unacceptable

processing times, even for optical correlators. Second, and more importantly, corre•lation

severely degrades in the presence of noise and clutter, and particularly so when distinct

objects in varying aspects may have nearly identical signatures. By its nature, correlation

uniformly emphasizes all locations; in particular, there is no mechanism for focusing on

ambiguous areas--those where confusions are likely to occur.

2. Any search p~rocedlire should then p~roceed on a coarse-to-fine basis, in which many

possibilities or "hypotheses" are considered at the early stages, giving way in a controlled

progression to increasingly narrow and more specific investigations. The separation of ob-

jects with nearly idlentica~l presentations should 1be delayed until the last stages of the search

proce(, ire. One natural protocol is then a coarse-to-fine decision trec.

3. It has long been speculated (in the computer vision community) tha~t object recog-
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4. In conventional statistical classifiers, a collection of features (functions of the image

data) is specified, and one attempts to estimate the conditional distribution of these features

given the various hypotheses, the so-called class-conditional densities. The latter step is

referred to as "training." Instead, the appropriate features could be learned and "training"

could consist of an off-line (and perhaps intensive) optimization procedure in which the

object representations are determined based on criteria such as economy and discriminating

power. We refer to these elementary features comprising the object representations as
"probes."

2.2 A Recognition Algorithm.

2.2.1 Overview. The basic idea is very simple. The algorithm involves sequentially
visiting each (or most) image locations and implementing a decision tree for a field of view

associated with that pixel. The output at each node of the decision tree is a list indicating
which object-aspect pairings are "active" at the pixel, that is, have not been eliminated

at any node. An object-aspect pairing is "true" within a field of view if the object is

positioned there in such a way that a distinguished point in a subimage containing the ideal

object-aspect signature is aligned with the origin of the field of view.

We will use the word hypothesis to indicate a particular object-aspect combination;

thus, for example, in the OCR case there is one hypothesis for each planar rotation of each

alphanumeric character and in the case of solid shapes, there is one hypothesis for each

object type for each triple of angles corresponding to an appropriate sampling of azimuth,

tilt, and rotations in a "ground" plane. The actual number and type of degrees of freedom

allowed is problem dependent. Formally, at least, the only difference is in the number of

hypotheses, which may be extremely large in real applications.

Information is extracted at predesignated offsets in the field of view subimage. In order

to disambiguate hypotheses, this field must be larger than the minimum rectangle required

to surround all hypothesis silhouettes. The hypotheses, or more precisely, the silhouette

templates or shapes, are then mutually registered by aligning the centers of the rectangles

circumscribing the silhouettes. This provides an origin for a reference coordinate system,

and this origin may then be regarded as the image location at which we are attempting to

detect and classify an object. In the ensuing discussion, image coordinates in the field of

view are relative to this reference point.

Still fixing a field of view, the algorithm is based on a series of probes which are

grouped into separate collections corresponding to nodes on a decision tree. These probes
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refer to particular functions of image data (i.e., statistics or features) which are evaluated

at predetermined locations, one type of function and one collection of locations for each

node in the decision tree. Given a model for the image formation process (including object

placement, noise, clutter, etc.), we may regard the probes as random variables indexed by

sets of points or "offsets" and whose values are symbolic labels. These offsets are deter-

mined by an optimization procedure designed to minimize the error rates corresponding

to false negatives (failed confirmations) and false positives (erroneous classifications). The

functional form of the probes is determined in a more or less ad hoc fashion. We can also

regard the probe values as "tests" upon which detection and recognition are based: the ob-

served data values determine the action taken at each node of the tree. Hypotheses which

are active at a given node and which "pass" a sufficient number of the tests for that node

will remain active at the given location. The final output indicates which, if any, of the

objects has been confirmed at the pending location; obviously most locations result in no

confirmations.

The basic strategy is then a variant of "divide and conquer": many alternatives

are pursued in parallel in the early stages, based on very general and mutually relevant

criteria, whereas the intermediate stages focus on subclasses of hypotheses and finally, in

the latter stages, the tests are designed to confirm or deny specific hypotheses against all

the relevant alternatives, for example a particular orientation of the letter "E" against all

pending aspects of other letters, usually ones similar (depending on the font) to "E", such

as an "F".

2.2.2 Probe Selection and Optimization. Henceforth we concentrate on the problem

of detecting 3D objects, such as those in Figure 2.1, based on range data. Exactly the

same principles apply to intensity images and to other problems, such as OCR. The only

information about the objects that will be utilized is the silhouette; in reality the images

may be of sufficient resolution to provide useful information about the internal structure.

The purpose of the probes associated with the upper nodes of the decision tree is the

rapid detection of a possible object at the given location. Consequently, these probes serve

as "filters" to separate objects from background and to quickly eliminate most locations from

further examination. Moreover, since in principle we allow no false negatives (unconfirmed

objects), these filters must reliably identify those locations associated with actual objects.

Consequently, most early confirmations are in fact false positives, i.e. do not correspond to a

distinguished location on an actual object but result instead from object-like clutter or other

objects at nearby locations. Specifically, for example, the probes in early nodes may then
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simply be points (relative to our coordinate system) with a label which indicates whether

the point should be "inside" or "outside" the entire collection of (registered) shapes. For

simplicity, we might chose the same number J of inside and outside points, yielding 2J points

in all and denoted by (Ij,Oj), Ij = (I!,I?), 0 = (01,0), j = 1,2,...,J. During the

search, i.e. when the algorithm is actually executed, the image intensity (=range) values

will be evaluated at these 2J points and these numbers will be correlated with the (binary)

template values. Thus, ideally, the points must be chosen such that each Ij lies inside each

shape and each O lies outside each shape. This can be accomplished by a relatively simple

optimization procedure.

In contrast, the probes in the middle nodes of the tree should be designed to separate

objects from clutter and from each other. Thus these nodes will typically be more com-

putationally intensive although executed at only sparse locations, i.e. those which survive

earlier decision nodes. They involve more complex probes since at this stage of the decision

tree we now wish to compare many hypotheses simultaneously and retain those with some

reasonable probability of occurrence at the current location. Remember that, ideally, a hy-

pothesis is confirmed at this location exactly when the offset is zero. Since we are no longer

primarily interested in separating objects from background, and since there are as yet no

specific hypotheses to entertain, we desire probes which effectively disambiguate among all

relevant pairs of hypotheses. Differences among all presentations of distinct objects must

be precisely identified and exploited in a manner which is robust to noise, clutter, and

parameter selection. This is the true recognition aspect of the problem.

We have experimented with probes which involve relational template matching. For

example, we might associate with each pair of locations, usually in close proximity, a binary

label corresponding to whether or not the pair of points straddles the object boundary, i.e.

has a figure/ground relationship. The figure/ground dichotomy upon which the early probes

were based is replaced by that of transition/no transition. In a real image containing that

object, the transition pairs should typically correspond to significant differences in depth

values whereas others should correspond to relatively small differences (depending on the

nature of the "background"). Each hypothesis is again represented by a binary string and

the object silhouette is recovered in the limit as the number of pairs increases.

It is important to notice that relational template matching necessitates that the ac-

tual intensity values that are extracted at the predetermined locations associated with a

probe must be converted to a label, usually just 0 or 1, for comparison with the stored

models. A critical factor in the success of this approach is that threshold values used in the

conversion of range values to labels be driven by pending interpretations. The alternative,
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using global thresholds, renders the algorithm unduly sensitive to parameter selection, illu-

mination changes, and other factors, and results in unacceptable error rates. One method

of incorporating this "top down" component is to use "floating thresholds"; see §2.3.7.

Specifically, for example, each probe might be a labeled pair (u, v) of locations. The

label depends on which template or offsetted template is present at the reference point (i.e.

within the field of view) and indicates the positioning of probe coordinates relative to the

silhouette. Specifically, the label of (u, v) for hypothesis 1 is denoted (1, 0), (0, I) or (I, I)

according to whether u is inside and v is outside shape 1, vice versa, or both u and v are

inside; we do not consider pairs for which both points lie outside any one of the templates.

Now given two shapes, say I and k, with I at offset 0 and k at offset b (a vector) relative to the

origin of the field of view and given a set x of N pairs of points, x = (un, vn), n = 1,2,..., N,

we define the discrepancy D(x; 1, k, b) between 1 and k as the number of indices n for which

(un, vn) has label (1,0) for shape I and label (0,1) or (I,I) for shape k, or label (0,1)

for shape 1 and and label (1, 0) or (I, I) for shape k. The rationale is that when we are

examining the actual grey level (depth) image, we expect to find a smaller absolute depth

difference Iu - vi between two (nearby) points u and v which are both inside an object

than between two points, only one of which lies inside and the other in the "background".

Moreover, we expect a point inside an object to be closer to the viewpoint than a point

outside that object, which is why, since we also record the sign of u - v, we "credit" an

(I, 0), (0, I) pair in determining D.

One way in which to choose the probe locations is to minimize a cost functional

designed to separate all pairs of hypotheses. Fix x = {(u,, vn), n = 1, ... ,N} and define

H(x) = 1 ((0 - D(x; 1, k, b))+)2

(1,k,b)

where the sum extends over all pairs of shapes I and k, or perhaps only those associated with

distinct objects, and all offset vectors b in some vicinity of the origin. We could then use

coordinate-wise descent to find a value of x" for which H(x*) is small, thereby providing a

set of probes which separates (to the extent determined by the threshold 0) the presentations

of all objects from those of all others. Notice that H = 0 if and only if every relevant pair

1, k is at least 0 units apart ,elative to D. When a field of view is fixed and the search is

performed, the image intensity values are observed at the coordinates in x* and for each

hypothesis I the observed intensity differences for the pairs (u,, v,) are assigned one of the

labels (1, 0), (0, 1) or (1, 1) using thresholds determined by the ideal proportions of label

types for shape I (at offset zero); see §2.3.7. This is the hypothesis-driven segmentation we

mentioned earlier. The result of this stage of the search is a collection of specific hypotheses
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for which the Hamming distance between the observed and template values falls below a

specified level.

Continuing on, we might then design hypothesis-specific tests in order to separately

confirm or deny each of the now active specific hypotheses. Thus, for each hypothesis 1, we

might define select probes by minimizing a functional of the form

Hi(x) = Z((D O - D(x;lk,b))+)2
k,b

where the sum now ranges over offsets b and all hypotheses k corresponding to objects other

than that associated with hypothesis I. At this stage probes should (and do) characterize

subtle differences among the hypotheses.

The purpose of the final stages of the tree might be to utilize still more dedicated

probes to disambiguate among confirmations which lie in close proximity. Or perhaps to

exploit the internal structure of the objects, that is the depth differences among locations

within the silhouette. Whereas computationally expensive, the procedure only occurs at

the very bottom of the decision tree, and hence is only performed at very sparse locations

and for candidate objects which have already "passed" all previous tests; consequently, the

overall "cost" is no greater than that for the previous stages.

2.2.3 Experimentation. We have included four figures illustrating some preliminary

experiments. Figures 2.3 and 2.4 show presentations of two "objects", seventy-two in all,

corresponding to each object rotated every ten degrees in a fixed plane. Figure 2.5 shows

an image constructed by randomly situating twelve such presentations, some of each type,

together with clutter. There is also noise, obtained by replacing roughly 15 percent of the

pixels by grey levels uniformly chosen from 0, 1, ... , 255. Figure 2.6 shows the actual objects

in the preceding figure correctly identified by an algorithm based on the principles outlined

above. In addition, one of the clutter pieces was incorrectly identified as the object of which

it is a subset; notice that the presented object, the actual object and the clutter are virtually

indistinguishable.

2.3 Towards a Mathematical Framework.

2.3.1 Hypotheses, Tests, and the Twenty Questions Problem. Let us consider the

rigid body recognition problem and attendant complexities in a somewhat more general

fashion. We have a list of states of nature or hypotheses, which may represent spatial place-

ments of rigid objects, as above, or perhaps phenomena of an entirely different character,
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Figure 2.3. Object A, thirty-six aspects

such as possible diseases, causes for an accident, and so forth. In addition, we have sources

of information, such as the "probes" we described above in the recognition problem, or
such as specific medical tests, examinations, and patient histories in the medical diagnosis

example. Let us continue to assume that information is available from a discrete collection

of "tests", which, in view of the uncertainty about the true state of nature, may be regarded

as randlom variables. In general, this family is extremely large and we may assume that no

two hypotheses determine exactly the same test values. Our problem is then to perform

these tests in anl "optimal" order, say with respect to reaching a decision a~s soon as possi-

ble, and assuming the test choices are made adlaptively, meaning that at each stage we may

ut~ilize the results of previous tests in ordler t~o choose the next one.

12
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Figure 2.4. Object B, thirty-six aspects

Here is a specific example; it captures the essence of the problem and is known as the

"Twenty Questions Problem", due to its resemblance to the once familiar parlor game and

such old T.V. shows as "What's My Line?". One of two players chooses an entity m (famous

person, historical event, unusual occupation, etc.) from among a known set of M entities

according to a probability distribution p = {pr,m = 1,...,M}. The second player wishes

to determine which entity was chosen and is allowed to select any subset A C {1, ... ,M}

and ask the question "Is m in subset A?" Assuming the answers are truthful, what is the

optimal strategy for minimizing the mean number of questions until the answer is known?

The solution is known, as well as bounds on the mean decision time, from results in
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Figure 2.5. Simulated scene, twelve objects of types A and B,

plus clutter and noise

coding theory. Specifically, given a set of symbols and probabilities p = {pm}, the Huffman

code [35] provides an explicit construction for the optimal way to code the symbols with

(variable length) binary strings in the sense that the mean number of bits that must be

examined during decoding is minimized. In the case of a binary code alphabet, the mean

code length pt of the H~uffman code satisfies the inequalities

H(p) :5 P < II(P) + 1
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Figure 2.6. Objects in previous scene, all correctly identified

where H(p) is the entropy of p:

H(p) A 109~lo2 Pi-

Thus, for example, in our twenty questions problem, we would only need about twenty

questions on the average if each of an original set of 220 entities were equally likely to be

chosen.

2.3.2 The Constrained Twenty Questions Problem. The Twenty Questions Problem

is of course not truly representative of those we wish to solve in object recognition and

related problems. For one thing, we wish to have tests (random variables) that are more
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general than indicator functions. But more importantly, the problem is too easy as stated

because, by allowing all subsets, the hypotheses are too well separated; in reality it may be

impractical or impossible to have exactly the right question available at each instance, not

to mention the problems encountered in actually storing or evaluating any collection of size

2 M when M is on the order of 1000, or even 30. For the time being let us ignore the former

restriction but limit the set of possible questions:

Constrained Twenty Questions Problem. We are given a pair (p, X) where p =

{pm,m = 1,...,M} is a probability vector and X = (Xm,n),m = 1, M,n = 1,...,N,

is an M x N binary matrix, i.e. Xm,n = 0,1 for each m,n. There are then N "tests",

represented by the columns of X in the sense that each column is associated in the obvious

way with a subset of the "hypotheses" M = {1,... ,M}. In addition, we assume the rows

of X are distinct, so that the set of tests uniquely determines the hypothesis, and that the

columns are also distinct, meaning that no test is "repeated." Given that a hypothesis is

chosen according to p, the problem is then to determine the optimal strategy for performing

the tests in order to minimize E(T), the mean decision time. (Here, of course, strategies are

adaptive; finding the fixed permutation of .1,..., M} which minimizes E(r) is much easier,

although still highly nontrivial.)

It is known [38] that this problem is in fact NP Complete, which means that it is

equivalent to all other NP problems in the sense that a polynomial-time algorithm exists

for converting it into any other one. Hence, if there was a polynomial-time algorithm

for solving the constrained twenty questions problem, then a solution would be found for a

host of famous problems, such as the Traveling Salesman and Chromatic Number problems.

Consequently, it is quite unlikely that anyone will find such an algorithm for every instance

of the constrained twenty questions problem. But this is unnecessary: as with many hard

combinatorial optimization problems, it appears that there are suboptimal strategies which

are nearly as good as the optimal one but immeasurably easier to find, and it is these

strategies that we intend to analyze.

Before turning to other strategies, and more careful definitions, it is interesting to

note that for relatively "small" problems, say for M < 100 and N < 20, one can in fact find

the optimal strategy (and hitting time) using dynamic programming, and these empirical

results (for a variety of setups (p, X)) support the contentions above and the more specific

conjectures discussed below.

2.3.3 Strategies. Let ý indicate the "true" hypothesis, so that ý is a random variable with

distribution p. Since ý is the only source of randomness, we could take the probability space
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as M = {1, ... , M}, although we might also wish to consider the setup AX itself as random.

Consequently, we will assume a background probability space with probability measure P;

thus P(= m) = pm,m= ,...,M.

Let X, denote the outcome of the n'th test, n 1,..., N: X. = X.(0= X,, Given

•, the distribution of X 1 ,... , XN is degenerate. In particular, the Xn are conditionally

independent given ý. In a more general framework, we would want to consider families

of "tests" which are conditionally nondegenerate, although perhaps still (conditionally)

independent due to resulting simplifications in defining feasible strategies. In addition, we

would want to consider tests Xn with more than two values, say values in {0,...,L - 1}, in

which case the statements and conjectures to follow are simply modified by replacing log2

with log'.

Let us define a strategy as a function ir from {0, 1}N to the set of permutations of

{1,...,N} such that 7r is adaptive in the sense that, for x = (XI, ... ,XN) E { 0 , 1}N, ri(x)

is constant and Wfl+I(z) = 7r,+l(x') whenever xi = xi, i = 1,... ,n. Equivalently, r, =

const., Ir2 = 7r2(xI), r 3 = 7r3 (XI,x 2), etc. Let SN denote the set of all strategies.

Notice that the number of strategies grows very fast with N. In fact, it is easy to see
that

N-2

ISNI = II (N - n)2'
n=O

Thus, e.g., IS41 = 576 and certainly no empirical results can be obtained by searching

among all strategies. However, as mentioned earlier, one can use dynamic programming

to find the optimal strategy for N in the range 10 - 20. This involves exploiting the

enormous combinatorial reduction afforded by realizing that, for the applications in mind,

M is very small compared to 2 N (in fact closer to order N), and hence the number of-actual

"histories" x E {0, 1 }N that can be "seen" (i.e., generated by following a hypothesis with a

given strategy) is approximately

M 
N

1:l X",. N12

where Xm,. = Xm, + + Xm,.

2.3.4 A Greedy Strategy and a Conjecture. We now focus on a particular strategy,

which we call the greedy strategy; it is easy to compute and we conjecture it is nearly optimal

in an appropriate sense. The idea is straightforward although the details are somewhat,

messy. We first choose the most informative test (about the true hypothesis) in the sense
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of entropy; thus 7r, is that index k for which the entropy H(Xk) of Xk is maximized, where

H(Xk) = - j P(Xk = X)log P(X =X)
x=O,1

(Notice that P(Xk = x) = EM 1•,,= Pm{X.&=x} where bA is 1 if A is true and 0 otherwise.)

Then choose ir2(x) as the most informative test given X,, = x, x = 0, 1, and so forth.

Equivalently, 7r, is the argument of K which minimizes the expected value of entropy of

the conditional distribution of ý given Xk; r2(x) is the argument of k which minimizes

the (conditional) expected value entropy of the conditional distribution of ý given (X,, =

X,Xk), x = 0,1; etc.

More specifically,

7r, = argmaxl<k<NH(Xk)

and for n > 2, with B(xj,...,Xn-1) = {XW, = X1,XW2 (xl) = X2, ,Xr.-&j,......-.) =

Xn-II

= argmaxl<k<_NH(P(Xk E dxIB(x,,...,x,,i))).

(The assumption that P(B) > 0 is of no real concern since otherwise B(xl, ..., xi) determines

a single hypothesis for some I < n- I, after which no other tests are informative (i.e., all the

conditional distributions are degenerate) and the remaining Tn, n > 1, may be arbitrarily

defined for sequences beginning with (xl,..., x1 ).)

An equivalent definition of this strategy can be given in terms of the conditional

distributions of t given the previous outcomes. Let H(P(dtIXk)) denote the entropy of the

conditional distribution of t given Xk. Thus for x = 0,1:

M

H(P(d.iXk = X)) = - E P(t = mIXk = x)log 2 M(• = mIXk = x)
m=1

where
M

S= m jX k = x) = (Pm { = XP A x, =
j=O

Then
7r, = argmin 1<k<_N E(H(P(d•IXk)))

= argminl<k<N E H(P(dtIXk = x))P(Xk = x)
X=0,1 :

and for n > 2

K,(X x,,-,n_•)= argmink E(H(P(dtlB(xl,...,xnl),Xk)))
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The conditional distribution is

P(ý = mIB,Xk = x) = PmImk(X1,-(...,X _,X)

E>M=,PIjk(Xl, ---, X.-., X)

where Ijk = 1 if Xk = x and Xj,r,(xi,...,xi-1) = xi for each 1 < i < n - 1, and Ijk = 0
otherwise. The fact that these definitions are equivalent follows from the identity below in

which B = B(xl,...,x,- 1) and 1 < k < N:

H(P(dýIB)) = H(P(Xk E dxlB)) + E(H(P(dýIB, Xk))IB).

If the strategy were executed on line, the computational requirements for choosing

test •-r, (having chosen 7ri, i < n - 1) would be modest: given we have performed n tests
the choice of the next test only depends on the corresponding current distribution p(n- 1) -

P(dýX,,, ...,X,,._) on hypotheses. In fact we need only know the support A C {1,...,M}

of p(n) to determine its values:

PM Pm/IEP,.
iEA

Now since the Xn, are just binary variables, and since the entropy of a two-point distribution

{a, 1 - a} is monotonically increasing as Ia - .51 decreases, we see that

M
rn = argmink 1.5 - M P•-1 )6{x,,=i}I

m=1

Thus we choose the test which most nearly divides the "active" hypotheses into two groups

of equal probability, where m is an active hypothesis at stage n if Pm-l) > 0. Actually, the

strategy is generally not unique, and 7rn may be chosen arbitrarily in the case of multiple

minima.

Notice that the greedy strategy is a "first order" strategy in that the choice of T, de-
pends only on the individual (conditional) distributions of the random variables X1 , ... , XN.

In particular, it does not depend on the joint distribution:

N

P(X, = Xl,...,XN = XNIxri,,...,xr, 1 )= = 1
m k=1

It would be interesting to show that the greedy strategy is at least (nearly) optimal among all

first order strategies, and perhaps to explore higher order strategies, such as those involving

pairwise test interactions (say based on the resulting entropy after asking two questions).

Let rg, ropj denote the decision times for the greedy and optimal strategies respectively.

We believe that T0, performs very well compared to r"pj. In fact, we make the following-
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CONJECTURE: A(p,X) - E(rg) - E(Tpt) is "small" compared to E(Topt)

and perhaps uniformly small over all (p, X).

This contention is based partially on the aforementioned experimental evidence, in

which we compared the greedy and optimal hitting times for various choices of p,X, and

partly on the result below. If we can establish this result, perhaps even a probabilistic

version involving a doubly stochastic system with an (independent) distribution over ma-

trices X, then this would help to provide the theoretical and practical foundation for the

rigid body recognition problem, in which case the tests would correspond to probes and

the hypotheses to both object-aspect pairings and perhaps entities corresponding to clutter

and background noise; see §2.3.7.

Theorem. If all tests are available (i.e., M = 2 N), then

E(r"9 ) _ Hf(p) + 1.

In particular, in view of the Huffman coding result, this implies that the mean number

of tests for the greedy strategy is within at most one unit of that for the optimal strategy.

Proof. First, it is fairly straightforward to prove that

P(r 9 > nlý = m) _5 {pf,<2--)

for every n,m. For example, if some pj is at least 1/2, then clearly the corresponding

hypothesis is identified in exactly one step, and this reasoning can be extended from n = 1

to any n by exploiting the fact that all "splits" are available at every stage. Assuming this,
CO

E(Tg) = P(Tg > n)
n=O

00 M

= Z P(T9 > nIf = m)pm
n=O m=1

0o M

< E E Pm6 {p.<2w'}
n=O m=1

M 0o

EPmE6{pm<2--}

m=1 n=O

M

= •pm(1 + [10og2p•m)
m=1

< H(p) + 1.
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where [ ] stands for the greatest integer function.

2.3.5 The Markov Chain of Active Sets. From here on we shall restrict our attention

only to regenerative strategies such as the greedy one, i.e., those for which 7r, only depends on

the current distribution over hypotheses, or, what is the same, the set of active hypotheses.

Clearly, the optimal strategy must also be of this type. We may regard these strategies

as determined by a function v which returns a coordinate value v(p) E {1,...,N} for each

probability vector p on M. More conveniently, since p(o) is given, we can take v as a

mapping v : A -- I {1, ... ,N}, where A denotes the set of subsets of M.

Given a strategy 7r, let Zn denote the set of active hypotheses after n tests:

Zn = IM: P(ý = MIX,,,..., X.rf) > 0}

Then Z0 = {1,...,M} D Z1 D Z2 ... , and {Zn, n = 0,...,N} is a Markov chain with state

space A. The transition function is

Pr(Zn+IIZ0, ... , Zn) = -mEZ. Pm X.,(Z.)=}, with
EmEZ. Pm

Zn+1 = Zn n {mlXmv(z.) = x}, X E {0, 1}.

All singleton subsets are absorbing states and the decision time T is the entry time to this

set, i.e. T = inf{n _> 0lZnl = 1}.

2.3.6 Other Cost Functionals. So far we have measured performance of a strategy in

terms of the expected time to a decision, a natural and compelling criterion. However,

there may be other cost criteria which have either practical or mathematical advantages. In

particular, we have explored another type of cost functional, which, in some cases, reflects

the actual computational cost of the search itself, and might be more analytically tractable

than the hitting time. Let Zn be as above, except set Zn = 0 for n > r. Let rm denote the

extinction time for hypothesis m:

Tm = inf{1 < n < N + 1 : m V Zn}

Then maxm rm = r + 1 and rm > n if and only if m E Zn. It follows easily that

N M

EZIZn I =Z, mr
n=0 rM=l

Now after each test is evaluated, it is usually necessary to "prune" the list of active

hypotheses, and we might consider a performance criterion based on the assumption that
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this is the major computational cost in executing an algorithm such as the greedy one, or

that all other costs (evaluating tests, updating distributions, etc.) are more or less common

to all other strategies of interest. Consequently, one might consider the optimal strategy to

be that which minimizes
N

E(C), C = IZ.1
,=0

This is the expected total number of entries of the matrix X which are visited for checking

consistency with test results; equivalently, it is the sum of the extinction times. Thus, e.g.,

in the equally likely case, it is easy to show that

N

E(C) = M- E Z: IZ,(x)l2

n=O ZE{O,1}R

where Zn(x) denotes the set of active hypotheses given (X,,..., X,•) = x.

2.3.7 Back to Object Recognition. Consider again the situation described in §2.1 and

§2.2: we are given a suitable mathematical characterization of a set of rigid objects together

with an image containing one or more of these objects in any spatial orientation; we wish

to identify which objects appear in the image, especially in the presence of noise, clutter,

and other sources of degradation.

2.3.7.1 Clutter and Background Models. Throughout this section we shall suppose

that a field of view subimage is fixed, somewhat larger than the size of the largest object-

aspect silhouette, and our goal is to determine whether any of the objects is "centered"

within the field of view with respect to some reference point. Or perhaps we wish to deter-

mine whether any of the objects appears anywhere (entirely) within the field of view. Let

us also assume that the set of rotations and translations ("offsets") has been suitably dis-

cretized, and hence there are a finite number of "hypotheses" corresponding to the distinct

object-aspect pairings. We may also wish to have hypotheses corresponding to clutter other

than that induced by the offsetted objects themselves, and certainly one or more hypotheses

corresponding to the event that no object is present at the reference point. Consequently,

we might consider a slightly different situation from the one with M individual hypotheses,

and consider the set M of hypotheses as decomposed into a disjoint union of sets Mk,

where for example M 1 denotes a composite hypothesis consisting of realizations of back-

ground and clutter, and each M k, k > 2, is the (possibly) composite hypothesis consisting

of presentations of object k, perhaps only "at" the reference point or perhaps together with

offsets, in which case these offset hypotheses would not appear in M 1 . In this context,
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assuming that we are not interested in separating one presentation of a given object from

another, we would then take

r = inf{n > 1 : Zn C Mk,some k}.

2.3.7.2 Probes. The tests {XJ} we have in mind are the types of "probes" we described

earlier. Let {Yt,t E T} denote the (ideal) intensity or depth values for a field of view

T, which may or may not contain an object aspect pairing. For binary templates (say

Yt = 0 outside silhouettes and Yt = 1 inside silhouettes), typical tests would correspond to

individual pixels, such as X = b(y,=i}, t E T (figure/ground dichotomy) and to pairs of

pixels, such as X = b5{,;IyI, t,s E T (transition/no transition). (Recall that for the actual

grey level images it would be necessary to set a threshold C to declare that "Yt = Ys" when

't - Y-1 < C.)

For grey level templates, such as with range data corresponding to (ideal) depth

values, we might choose relational tests based on pairs of pixels t, s of the form X = 0, 1, 2,3

respectively if (t,s) is an (inside, inside), (outside, inside), (inside, outside), or (outside,

outside) pair of image locations. Similarly, tests based on four locations might be of the

form X = 6biv,-y.I<ly._v.i., the interpretation for range data being that s,t represent

spatial points which are "closer together" than those represented by u, v.

2.3.7.3 Decision Making with Noise: Floating Thresholds. An important issue is

data conversion, transforming the observed intensity values, often degraded and assuming

many values, into elementary test values for comparison with the (ideal) stored values. We

have experimented with "floating thresholds," and propose to supply a rigorous statistical

justification for this approach.

Basically, the idea (in the binary case) is the following. Given that a certain hypothesis

is "active" at a given image location, we must decide whether or not to keep it active

after collecting information in the form of test results. Due to the presence of noise and

other degradation factors, we do not anticipate updating the posterior distribution over

hypotheses after each individual test, but rather after a series of tests, which, as in §2.2, may

be regarded as a node on a decision tree. For example, we might order the entire collection

of tests in accordance with some strategy and then group these tests into batches. Now

given we are considering a particular hypothesis in a field of view, and given the raw test

data, we order the outcomes and select a threshold for which the number of tests which are

then assigned the label "1" matches the number of "1"s in the stored (ideal) test sequence
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values for the particular hypothesis. Thus the pending hypothesis is given the "benefit of the

doubt" and at low noise levels the observed and stored strings will necessarily coincide. We

conjecture that the probability of detection error is then minimized under an appropriate

model for the image formation process.

3. RECOGNITION OF NONRIGID OBJECTS

3.1 Introduction.

Our approach to the recognition of rigid objects makes essential use of a presumed

fixed and a priori known structure, both for problem-specific reprcsentations and for search

strategies. The approach is workable when the presentation of objects is highly constrained;

we have so far explored examples with only one (rotation) or two (rotation and range)

degrees of freedom. Of course, there are already many practical problems in which this

set up is realistic, and it is undoubtedly possible to make extensions (perhaps involving ad

hoc estimates of scale and orientation) to several more degrees of freedom. However, many

recognition tasks involve shapes with essentially infinite degrees of freedom, such as the

presentation of hands or hearts or coronary arteries in medical pictures, or the presentation

of numerals in handwritten zip codes, to name just a few examples. For these problems we

will require entirely different representations and search strategies.

The basic idea behind our approach to nonrigid object recognition can be viewed in

either of two ways, and we shall refer to both points of view in the following discussion. From

the more intuitive point of view, our object models are templates together with a distribution

on deformations of these templates. The templates are prototypical examples of the object

class. The ensemble of presentations of a particular object is thereby modeled as the result

of acting on a template with a random deformation. The advantage of this approach is

that it conveniently captures both the global regularities (embodied in the template) and

the typically local departures from the prototype that characterize a particular instance of

an object. It is important that the deformations are mostly local, because we can then

describe them by a (local) random field, and this has essential computational advantages.

The idea of deformable template models for nonrigid objects is certainly not new.

Many authors have taken the same basic approach (see for example Bajcsy and Kovacic

[6], Burr [8], Fischler and Elschlager [151, and Widrow [491), although there is considerable

variation in the details, and, in general, the use of random fields to describe the deformation

seems to be new. We began the study of our approach with some examples of biological

shapes (Amit, Grenander, and Piccioni [3], Grenander, Chow, and Keenan [30], and Knoerr
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[37]), and have recently begun exploring several other examples, as will be discussed below.

The other point of view referred to above is that of hidden Markov models. The

application of a random deformation to a template produces a random structure. If the

deformation mechanism is a local random field, then so is the resulting structure. Mostly,

we use homogeneous deformation fields, and leave it to the template to capture global and

object-specific structure. The resulting random structure is inhomogeneous; the structure

models are then inhomogeneous (nonstationary) Markov random fields. In the one dimen-

sional examples below of coronary arteries and handwritten numerals, these are second

order 12 -valued Markov processes, with branching graph structures (see §3.2.). The ac-

tual observations are manifestations of these structures in a grey-level image, and thus the

overall observation model is a hidden Markov model. Our approach, then, can be viewed

as an adaptation of the highly successful hidden Markov approach to speech recognition

(Bahl, Jelinek, and Mercer [5], Lee [39], and Rabiner [45]). For application to vision, we

extend the Markov models from conventional one dimensional models to random fields with

branched linear graphs, and with two and three dimensional graphs.

3.2 One dimensional structures.

3.2.1 Examples. We have studied two prototypic applications. One is the identification

of coronary arteries in angiograms. The other is the identification of handwritten numerals.

The angiogram project is in collaboration with Dr. Jonathan Elion who is a cardiologist

at Brown University Medical School and is an expert in the applications of digital image

processing techniques in medical images. The goal is to locate and identify instances of the

major coronary vessels in coronary arteriograms. These arteries are highlighted by injection

of contrast dye in their proximal portions, and thereby show up as relatively dark regions

in (digitized) X-ray images (see Figure 3.1). The motivation is to support increasingly

automated analysis of medical images. More specifically:

1. Several approaches to the computer based assessment of coronary artery structure

and physiology from radiographic images have recently been developed. Among these

are quantitative measures of coronary stenosis, three-dimensional reconstruction of

the coronary tree, assessment of regional contractility, and measurement of coronary

blood flow. Widespread application of these approaches has not been realized be-

cause of the lack of a reliable means of automatic computer identification of key

anatomic landmarks. The current state of the art for most computer programs that

analyze cardiac images requires an expert operator to interact with the program and

identify the landmarks. This introduces opportunities for inter- and intra-observer
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variability, and limits the utility of the analysis during the actual performance of the

cardiac catheterization. Automated identification of coronary vessels would provide

the needed landmarks for many of these applications.

.:: ."•: i i:• • :~........

Figure 3.1. Angiogram showing right anterior oblique (RAO) coronary artery

2. Arterial lesions are best viewed and most accurately assessed when the X-ray beam

is perpendicular to the artery. Modern angiogram equipment is capable of imaging

in arbitrary planes, and can be moved during an imaging session. This facility is

generally not used because it is difficult for the clinician to ascertain the appropriate

orientation. This process could be automated if accurate machine identification of

the coronmry vessels could be achieved.

3. Modern digital X-ray techniques produce very large volumes of image data from each

diagnostic session. It is not feasible for the clinician to review coronary vessel status

ini every collecte(l frame. Automated search, and iltimately, automated highlighting
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of lesions (generally seen as a narrowing of the artery) would be a valuable clinical

adjunct.

There are, as well, a host of important applications to handwritten numeral recogni-

tion. These include automatic zip code reading, reading and verification of dollar amounts

(so-called courtesy numbers) on hand-drawn checks, and verification of dollar amounts on

credit card receipts. More generally, the problem is prototypical of finding one-dimensional

structures in images, including surface and shading discontinuities, and object boundaries.

Figure 3.2 shows a set of courtesy numbers and illustrates the variation in size, orientation,

and shape that must be accommodated.

$.. j

I IL

-- .

Figure 3.2. Courtesy numbers from hand-drawn checks (thresholded images)

3.2.2 Shape models. Global structure is coded via certain canonical examples that serve

as templates. The object ensemble is modeled as the result of applying a random defor-

mation to the template(s). With an eye towards the recognition task, and the associated

computational algorithms, we approximate the templates by linear splines; see Figures 3.3

and 3.4 for example artery and numeral templates together with their spline approximations.

For now, we have simply chosen the knots (designated 4T, k = 1,2,...; T for 'template')

by hand, via an interactive mouse-driven program. As will be obvious from the ensuing

discussion it is important to include the natural "critical points", such as discontinuities in

derivatives as well as branch points and junctions. There is a natural continutum formulation

which is illustrative, and in fact helpful in guiding the scaling of certain of the distribution

parameters; this will be discussed shortly.
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Figure 3.3. Artery template and its spline representation

T

xn+p4-+r p x~~~~

Figure 3.4. Numeral template and its spline representation
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There may be only one template for a class, but we anticipate more typically several

templates. (Consider, for example, the European three-stroke seven versus the American

two-stroke seven.) In any case, the ensemble of objects in a class is generated by applying

random deformations to the templates. These deformations are modeled as nearest neigh-

bor group-valued Markov processes, with one site corresponding to each segment of the

spline-approximated template. We will denote by Sk a random affine transformation to be

applied to the k t1 segment, which runs between xT1 and x4. We model the collection of

transformations, So, S 1 ,..., as a nearest neighbor ("first order") Markov process with graph

that is the dual of the template graph: i.e. two transformations Sa and Sb are neighbors

if the corresponding line segments share an end point. Finally, the joint distribution on

So, S1,... is constrained to preserve the continuity of the template; connected line segments

are mapped to connected line segments.

For these one-dimensional models it is more convenient to take the hidden Markov

model point of view; that is, it is easier to work directly with the induced distribution

on the knots, xo,xl,.... (The absence of the superscript T will distinguish these random
variables from the template knot locations xTXT,...) It is easy to check that the induced

distribution is second order Markov: the placement of X3 , for example, will depend on

both x, and x2 , since these together carry information about the transformation S2 , which

in turn determines the distribution on S3 and hence on X3. Thus we arrive at a second

order Markov process taking values in R 2 . The associated dependency graph for the artery

example of Figure 3.3 is shown in Figure 3.5. It is important to realize that, whereas the

distribution on transformations may be chosen to be homogeneous, the resulting distribution

on knots is inhomogeneous. In particular, the global template structure enters in when the

transformations are actually applied to the template line segments. This is then reflected

in the distribution on knots.

In our preliminary experiments we have used, exclusively, Gaussian distributions on

the knots x0 ,xl,.... To build in rotation and scale invariance we impose uniform and

independent distributions on x0 and x1 , and then, conditioned on these:

X2 = x, + AI(x 1 - xo) + 17 (3.1)

where A, is a fixed (template specific) 2 x 2 matrix, and rh is symmetric Gaussian in R 2.

Similarly, X3 = X2 + A2 (X2 - xi) + r72 , and so on. (Strictly speaking, at the first knot

point or branch point there is a dependence not only on the branch point and its immediate

predecessor, but also on any other nearest neighbors of the branch point. Refer, for example,

to Figure 3.5. We have simplified somewhat by ignoring these latter dependencies. This

gives us a one-sided "causal" representation of the random structure.)
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Figure 3.5. Dependency graph for artery shape model

As we have indicated earlier, the knots are chosen rather arbitrarily, and by hand.

In particular, the resulting segment lengths are not equal. We typically put more knots

in regions of high curvature, for example. It is natural, and important, that the variance

of a knot, say that of X2, depend on the length of the associated template segment, 4
to X2. Referring to equation (3.1), this amounts to placing an inhomogeneous variance

on 71k, say aoI, where I is the 2 x 2 identity. How should 0 k scale with the template

segment length Ixk-l - XkT? The answer can be found by taking the continuum limit

of the discretization procedure, forcing the length of the longest segment to zero. The

result is a random and branching continuously differentiable curve, whose derivative is an

inhomogeneous diffusion. In carrying out this procedure one discovers the correct scaling

of the standard error: Uk oc IJXk- - XT3/2.

3.2.3 Data models. The modeling task is completed by specifying a distribution on

observable grey levels conditioned on a particular instance of the object class. The product

of this distribution with the shape distribution for the object class, developed above, is

then the joint distribution on shapes and their observed presentations. It is obvious from

Figure 3.1 that the width and contrast of an artery is highly variable. This is certainly the

rule in challenging recognition tasks: the actual grey-level presentation of an object is not
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well accounted for by any single parametric distribution, even when the shape, range, and

orientation are fixed. (See related discussion in §2 above.)

For both arteries and handwritten numerals, a minimal characterization of the grey-

level presentation specifies that it is (locally) darker than the background area in its imme-

diate vicinity. Along a segment, Xk-1 to xk, we expect to find intensities that are typically

darker than those found along parallel segments to either side; see Figure 3.6. Using yi, zi,

and wi for the intensities encountered in the three rectangular regions illustrated in Figure

3.6, we model the grey-level likelihood, conditioned on the locations Xk- 1 & xk, as

p &(1 - P)N-a

where
N

i: 1f<AiWI

a is the number of times yt is darker than both zi and wi, and p is an a priori estimate of

the probability of this event. p is a rough characterization of the signal to noise ratio.

DARKER

Figure 3.6. Nonparametric characterization of grey-level

presentation of artery or numeral segment
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We have found this likelihood to be computationally efficient and effective in handling

rather drastic contrast changes such as those seen in Figure 3.1. But many variations are

possible, and better data models will undoubtedly emerge. (In fact, very detailed models of

the grey-level presentation of the object are possible, within this same Markov framework;

see the work of Cooper et. al. [10]. on boundary detection.)

3.2.4 Matching algorithm. We wish to find all instances of each object type in a given

grey-level picture. As an example, consider the two templates shown in the left panel of

Figure 3.7. These were placed in an artificial "noisy" scene and the composite was distorted

by folding before imaging (right panel, Figure 3.7). The problem is to find all instances of

object types "1" and "2".

-~-0ý

Figure 3.7. Left panel: two hand drawn templates. Right panel: Placement of

templates in artificial scene. Templates were distorted by slightly folding the

scene before imaging.
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Suppose that we screen (liberally) the entire image for possible end points of line

segments. We could then attempt to "track", from each of these purported end points,

each of the object types ("1" and "2" in the example). More specifically, we could attempt

to maximize the likelihood of knot placements under each object model, conditioned on

the fixed end point and on the grey-level data. Careful examination of the above shape

models indicates that this maximum can be computed via dynamic programming. The

end result is the most likely match of a given template to the grey-level image, under the

initial constraint on the end point. This match has an associated likelihood which serves

as a measure of the strength of the hypothesis that the object is indeed present with the

intended end point. This was carried out in the synthesized scene shown in the right panel

of Figure 3.7. The result was a collection of likelihoods that separated into the two correct

matches (high relative likelihoods) versus lower likelihoods of incorrect matches; see Figure

3.8.

Figure 3.8. High likelihood matches for Figure 3.7 scene

The computational complexity of the dynamic programming algorithm is a function

of the order of the underlying Markov process that serves as our shape model. In particular,

the number of operations is:

M-. O+1

where M is the number of knots, E is the size of the state space of the knots, and 0 is

the order of the model, order two for the artery and numeral models introduced here. In

principle, E is the number of pixels in the image, but under the Gaussian model, all but a

few pixels are essentially impossible, given the placements of the two previous knots. At the

inner most loop in the dynamic programming algorithm, values of the two preceding knots
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are fixed and hence most of the E pixel locations can be ignored. This and other similar

pruning assumptions make the computations feasible.

3.2.5 Coarse-to-fine search. Figures 3.7 and 3.8 illustrate the ability of the algorithm to

ignore confounding noise and to "tunnel" through gaps. However, the necessity of pruning

makes the algorithm vulnerable to such effects, and we often find suboptimal matches in

experiments with real images. Coarse-to-fine search strategies can substantially constrain

the reasonable matches. The idea is to condition on the location of two or more possible end

points of a hypothesized object. Candidate end points are relatively easy to find. These can

then be taken in pairs, and two end points of a template can then be constrained to match

these locations. The resulting conditional distribution on the remaining knots is then used

for the dynamic programming search. Preliminary experiments have been encouraging; see

Figure 3.9.

$

Figure 3.9. Matches conditioned on two endpoints

This same reasoning can be applied at several resolutions. The lowest resolution is
on pairs, or perhaps triples, of end points. Conditional on these, other critical points are

sought. The procedure continues to the highest resolution which amounts to tracking curve

segments under multiple positioning constraints. Very much unlike the situation in two
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and three dimensions, where distributions at course resolutions must be approximated, the

one-dimensional structures of the models proposed here admit exact representations at all

resolutions.

3.2.6 Model eztensions. It will most likely be necessary to broaden the class of struc-

ture models. For example, by beginning with homogeneous random fields for the description

of deformations we preclude the possibility of certain degrees of freedom having naturally

higher variance than others. But it is clear, for example, that the angles at junctions of

strokes in handwritten characters are more variable than angles between spline segments

internal to a given stroke. The above framework needs to be extended to better accom-

modate the natural degrees of freedom in the object class. This will likely require that we

introduce non-Gaussian distributions, and will thereby complicate the calculation of coarse

resolution distributions (see above discussion of coarse-to-fine search).

We anticipate that it will still be possible to calculate closed form expressions for

coarse level distributions, although this may now require the use of automated symbolic

manipulation, as is available with Macyma, Mathematica, and other similar software pack-

ages. For a given model, these are "off-line" calculations that need only be carried out

once.

3.2.7 How rich is the class of hidden Markov models? A common ingredient in

our work on image processing and image analysis has been the use of Markov processes,

of the usual one-dimensional variety as well as more general branched-type processes, such

as those introduced above, and two and three dimensional random fields. These processes

have been used to model structure and variability of image attributes and objects. Thus

we have used two-dimensional Markov random fields as models for grey-level distributions

and boundary placement ([18,29,25]), for modeling textures ([20,221), and for modeling

isotope concentration maps in single photon emission computed tomography ([24,40,43]),

and more recently, one, two and three dimensional random fields for modeling shapes in

reconstruction and recognition experiments ([3,30,37]). In these applications, as well as in

the application of Markov models to speech recognition, what are actually observed are

functions (sometimes random) of the Markov process. The observables are thereby "hidden

Markov". The resulting observation process itself is typically not Markov; in fact, it is likely

to have a very complex dependency structure. Indeed, this is what is behind the utility of

hidden Markov models. The model is built from local pieces (a local Markov process-or

random field-and a local observation equation), but can account for highly cormIplex and

nonlocal structures in the observations. The question arises as to how generF.l is the class
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of hidden Markov models. This and related questions have been explored in some recent

work with Hans Kunsch and Athanasios Kehagias.

To be precise, consider, for example, the class of first order hidden Markov models in

one dimension. Let {xt}' 1 be a stationary first order Markov process with finite state space

R,. Let f : Q, -+ Q0, where fu is also finite, and typically InyI < I10I. Then yt - f(xt) is

a hidden Markov model. How rich is the class of such processes? Apparently very rich, as

indicated by the following relatively easy result:

Theorem. Let {jy}co- be a stationary process with finite state space Q¾. There exists a

sequence of finite-state stationary hidden Markov models {} _o tX, f _

such that the processes

- fN(XN)

converge weakly to {jy}0to=-0.

In fact, the multi-dimen Fional version of this is also true: We can approximate any

stationary process on L 1 t te d-dimensional square lattice) by a sequence of nearest-neighbor

hidden Markov ranuo:ý . ields. By nearest neighbor, we mean a pair-clique system of nearest

horizontal and vertical neighbors only. Thus:

Theorem. Let {Yt}tELd be a stationary process with finite state space fQ. There ex-

ists a sequence of finite-state stationary nearest-neighbor hidden Markov random fields

{4 }gELd, N f Xo: ,* fO, such that the processes

N fN(.N)

converge weakly to {yt}tELd.

Part of the motivation is to establish the richness of this class of models for practical

applications. Evidently, very little is lost in restricting oneself to hidden Markov models. In

addition, there is the intriguing possibility of rendering textures for computer graphics and

simulations, and of modeling one-dimensional signals such as speech waveforms. For these

modeling purposes, we need a corresponding estimation theory to guide the selection of an

appropriate hidden Markov model given observations of an arbitrary stationary process.

Consider again the one-dimensional problem, and suppose that {t}0t=-- is ergodic with

state space Q. = (1,2,...q}. Let MN be the class of all strictly positive N x N transition

probability matrices on QN -- {1,2,...N}, and let fN(x) = f(x) = x mod q. If {xN} is the

stationary Markov process associated with an element of MN, then yN = f(N) is hidden

36



Markov with state space 9,,. Given an observed sequence YI,y2,...yn of the y-process, we

seek to "fit the data" by estimating an appropriate transition probability matrix for (X{}.

Suppose that we pretend, temporarily, that {yt) actually is hidden Markov of this form,

and proceed to estimate the corresponding m E MN transition matrix for IxN}. Let rnN, n

be the maximum-likelihood estimator, given Y1, Y2, ...Yn, and let ýN"n be the corresponding

hidden Markov model. We have shown that for essentially arbitrary ergodic processes {Yt},

{I Nn} _ {yt}, provided that N = Nn T1 0 sufficiently slowly.

The conclusion is that we can, at least in principle, fit essentially arbitrary one-

dimensional stationary processes with hidden Markov models. The corresponding result in

higher dimensions appears to be substantially more difficult, although the above-mentioned

result about approximation with Markov random fields strongly suggests that an estimation

result is also available.

We have used the one-dimensional result to fit some speech waveforms with excellent

results. We have also done some preliminary experiments with some simple textures, under

the presumption that the estimation result in higher dimensions is true as well, and have

obtained good renderings of these simple patterns.

4. TWO AND THREE DIMENSIONAL GLOBAL SHAPE MODELS.

A distinctive feature of the nonrigid object recognition problems and models in §3 is their

one-dimensional structure; the graphs describing connectivity of the objects are linear or

branching linear graphs. The one-dimensional structure is used to full advantage when we

can apply the principle of optimality and dynamic programming to compute solutions of

global optimization problems.

The basic theme in §3 of using deformable templates, modeled probabilistically, has

been explored in a variety of settings, including higher dimensional ones for describing

surfaces and volumes. It is useful to consider the deformable template paradigm in some

generality, to identify common features of the mathematical models and problems, and to

develop approaches and algorithms which may transcend a specific motivating application.

Many image ensembles are characterized both by exhibiting characteristic shape and

by a high degree of variability. For example, medical imaging usually leads to very structured

pictures whose appearance expresses anatomical, histological, or cytological properties. On

the other hand they vary a lot, not only between individuals, but also for one individual,

from one recording to another. As a matter of fact the variability is crucial since only

understanding of what normal variation means makes it possible to define precisely and to
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detect pathologies.

For man-made objects variability will also be important if the objects have many

degrees of freedom and the corresponding parameters are not known in advance. This can

be the case even for rigid objects: for instance, in infrared imagery, thermal signatures may

be unknown a priori and have many degrees of freedom.

Purely local methods, such as noise suppression and edge detection, have shown their

usefulness, especially for texture patterns, but are not sufficiently powerful when the char-

acteristic shapes are of global nature. For this reason we have introduced and applied

global shape models based on deformable templates to a number of image ensembles. We

refer to a study of leaf shape, Knoerr [37], human hands pictures acquired by visible light

cameras, Grenander-Chow-Keenan [30] and by X-ray cameras, Amit-Grenander-Piccioni

[3], and range data images, Grenander-Keenan [31]. Others are under way, including the

work on arteriograms described above and ongoing research on recognition of shapes of

mitochondria, in collaboration with Michael Miller at Washington University. See Table

4.1.

Space Object Imaging

Collaborators Application Dimension Dimension Modality

Chow-Grenander- HANDS 2D 1D Template Visible Light

Keenan

Knoerr LEAVES 2D 1D Template Visible Light

Amit-Grenander- HAND XRAYS 2D 2D Template X-rays

Piccioni

Grenander-Keenan RANGE DATA 3D 2D Template Laser Radar

Grenander-Miller MITOCHONDRIA 2D 1D Template Electron

Multiple Objects Microscopy

Table 4.1. Studies developing global shape models

4.1 The basic idea is to incorporate 'typical shape' into one or several templates, while
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variability is expressed by a (prior) probability distribution. The template is deformed by

applying a group of transformations and the resulting image is then observed via some

acquisition technology, usually with observational noise.

We then make inferences about the true image (not corrupted by noise) using the

knowledge contained in its (posterior) probability distribution conditioned by having viewed

the observed one.

The inference algorithms obtained are, if the global shape model is correct, the best

possible ones. They do not aim just for optimal restoration of the image but for a structured

analysis, image understanding, in the following sense.

Intrinsic understanding: Assuming the global shape model used to be true the

algorithm should give objective information in quantitative form about image features

such as lengths, areas of parts of the image, outline of these parts, description of the

topology linking these parts.

Extrinsic understanding: The algorithm should signal abnormalities not consis-

tent with the (normal) variation expressed by the global shape model, and flag the

suspicious locations in the picture.

4.2 Mathematically this research strategy is formalized in terms of a generator space G of

primitives, for example line segments, conic arcs, surface stars, etc. (choices of G, S,-.. and

so on in our earlier studies are shown in Table 4.2). A generator g E G has a number w(g) of

bonds attached to it, #31,#2," .A.() which are used to define locally regular configurations

c = a(g1 ,g 2,."gn) (4.1)

where a is a graph from a graph family E, the connection type that expresses global regu-

larity, and the gi in (4.1) are situated at the sites of the graph a. Two sites il and i2 that

are connected by a should satisfy a local regularity condition

f3,,(gip/31 2 (gi2 ) = TRUE,

where p is a binary truth-valued function. For instance, in the spline representation of a

handwritten digit "5", generators g are oriented line segments (vectors), the graph structure

a is linear, and the local regularity condition p enforces connectivity/continuity of successive

segments.

The configurations thus obtained form the configuration space C(JZ), where the reg-

ularity 1Z is

TZ =< pE > .
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A template configuration Ctemp = a(0),0) ()) 2 C() is subjected to defor-

mations
-C sl(o) (0) sng(O))ctemp -'+ C--=a gl 's2g2 ,"* sg

where the si are elements of a group S of transformations (similarities) S : G -+ G.

To account for variability around the template(s) we introduce a probability distri-

bution on Sn by a density

1Z J A [,3j,(gi ý)'flJ, (gi2)]

a

with some acceptor function A(.,-), similarly to the definitions of Markov random fields in

statistical physics.

This induces a probability density 7r, the prior, on the configuration space C(1Z). For

a given (noisy) image acquisition technology we shall let L(I1Ic), the likelihood function,

express the conditional probability density of observing the deformed image lY if c is the

true (and unknown) configuration.

Bayes theorem then gives us the posterior density

p(clYV) cx 7r(c)L(11Y1c) (4.2)

and it remains to simulate (4.2); if we can do this by a computationally feasible algorithm

the optimal image inference falls out almost automatically.

To exemplify the above, somewhat terse summary, the presentation in Table 4.2

shows how G, S.... have been chosen in earlier studies. Complete details can be found in

the references.

4.3 The simulation of (4.2) is not straightforward since the domain of p(I./') is a compli-

cated space.

In the first attempts, Grenander-Chow-Keenan [30] in 2D, Grenander-Keenan [31] in

3D, simulation of (4.2) was achieved by stochastic relaxation described in Grenander [29],

Geman-Geman [18]. While this was carried out with success it also became clear that as

we go ahead to more detailed shape models it is difficult to develop well structured code

for stochastic relaxation. The main reason is that when we use multi-stage algorithms with

stacked similarity groups (see below) the data structures tend to be messy.

To avoid this our more recent computer implementation have used diffusion methods,

also described in Geman-Geman [18] and Grenander [29]. This is organized as follows.
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Application Generators G Transformations S Graph Structures E

HANDS Vectors US(2) x 0(2) CYCLIC

LEAVES Vectors US(2) x 0(2) CYCLIC

XRAYS Points (with Translation LATTICE

old values) Group in JR2

RANGE DATA Facets of GL(3) TESSELATED

Polyhedra ICOSAHEDRON

MITOCHONDRIA Vectors US(2) x 0(2) MULTIPLE

and 0(2) CYCLES

Table 4.2. Examples of Generators, Groups and Graphs

In all cases of interest the group S has been a low dimensional Lie group. Introduce

a stochastic differential equation (S.D.E.) for the group element z = (sI, s 2 ,.' sn) E Sn

dz(t) = f [z(t)ldt + dW(t) (4.3)

In (4.3) W is a Wiener process taking values in Sf, which is locally Euclidean so that (4.3)

can be made meaningful. The function f(.) is the gradient of the energy function H(.) with

p(cllY) = exp H(c) - (8)

Initializing z(O) and solving (4.3) iteratively we go on until t is big enough to make

the distribution of z(t) sufficiently close to the equilibrium distribution, where this has to

be made rigorous by arguments from the t' " of S.D.E.'s. We actually do this in stages,

starting in low dimensional subgroups of S1, stacking the subgroups, and then slowly let

the subgroup increase; a detailed analysis of how this should be done can be found in Amit-

Piccioni [4]. The subgroups are obtained from the subspaces in the Lie algebra associated

with 5S'.

While our computer experiments employing stochastic relaxation required consider-

able computing power and were executed on an IBM 3090 and a CRAY XMP, our more
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recent experiments using diffusion simulation could be done on a SUN workstation and even

on a 386 PC.

4.4 If the number of objects is unknown to begin with the model must be extended to

prior densities 7c defined on a configuration space C(lZmut) where the regularity l~mui =<

P, Emult > is over a larger connection type

00

Emult = UEk; Ek=EXEX ... X E.

k=O k times

In order that the algorithm be able to understand such images it must be able to

create (and annihilate) hypotheses about objects. But

00

C(Izmuit) = J C(< p, Ek >) (10)
k=O

is made up of a denumerable sequence of continua so that instead of the S.D.E. in (4.3)

the dynamics must be able to jump from one continuum to another in addition to more

continuously (changing shape) within one of them.

Therefore (4.3) is replaced by a jump-diffusion process. This concept is old, going

back to the 1930s but has not been applied to hypothesis generation as above and we plan

to explore this possibility in depth and apply it to the acquisition technologies mentioned.

Two illustrative applications now under study are: finding mitochondria as well as

membranes in electron microscopy with high magnification; and structured restoration in

3D, in particular images obtained by optical sectioning and by range finding laser radar.
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5. THREE DIMENSIONAL SHAPE RECONSTRUCTION

The problem of estimating or reconstructing geometric properties of 3D surfaces, such as

orientation, height (depth), curvature, or determining topographic maps, from digital image

intensities, is known as "shape from shading" in computer vision, and "radarclinometry" in

airborne or spaceborne imaging (synthetic aperture) radar systems. In most applications,

the estimation of 3D geometric properties is coupled with the determination of surface's

composition, e.g. albedo or dielectric properties. A typical method for estimating 3D

shapes or topographic maps, is "stereo" based on a stereo pair of optical photographs

[32,41] or radar images [14]. However, stereo vision or "stereopsis" (which is the single most

important process by which human beings obtain depth information) has played a limited

role in computer vision due to its computational demands and lack of accuracy. In the case

of spaceborne radars (such as the Magellan Synthetic Aperture Radar which will map the

surface of Venus) a pair of stereo images is typically unavailable.

The 3D shape reconstruction problem from a single image is underdetermined ("ill-

posed") due to the loss of information in passing from a 3D continuous physical scene to

sampled, quantized, and typically degraded by blur noise and radiometric distortions, 2D ar-

rays. Most approaches [33,34,44] to the shape-from-shading problem, involve preprocessing

steps which encompass removal of noise and other aspects of degredation, and segmentation

and boundary detection (e.g. occluding boundaries). In [26,48] a coherent Bayesian-Markov

Random Fields procedure for estimating 3D geometric properties and surface composition

(albedo) from a single image with or without degradation, has been developed. The proce-

dure has been tested successfully on video images, and we are currently experimenting with

simulated synthetic aperture radar (SAR) data. The methodology accommodates the use

of multiple data, e.g. multiple wavelength images, or images from different sensors. -

The basic strategy is the same for video and SAR data, but the two cases are tech-

nically different primarily because of differences in the data acquisition processes and data

interpretation. In the case of optical images, the procedure is formulated as follows: Let

S' = {i = (i 1,i 2 ) : 1 < il,i 2 < N} be the pixel lattice (image grid). The "ideal" (unde-

graded) image intensities XP = {Xi : i E St} are related to the geometry of a surface via

the "irradiance equation" [33]

Xip = R(j, 9, f/V,pi),i E (5.1)

where 57i is the surface unit normal at a physical point corresponding to pixel i E SP, ff
is the direction of the illumination source (for an extended source, 9 is an "effective"
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direction), V is the direction of the camera (which, for simplicity, is assumed to be constant

throughout the image, i.e. we assume orthographic projections), p = {pi : i E SP} is the

albedo function, and R is the reflectance map which has been studied extensively for various

illumination sources and material. The actual observed (recorded) data Y = {Yi : i E SP}

are a degraded version of XP given by a transformation typically of the form

Yi = 0b0[(KXP)i], ii} (5.2)

where K accounts for blur ("point spread function"), 0 accounts for radiometric distortions,

iji is a collection of noise processes, and V defines the noise mechanism(s) (e.g. additive,

multiplicative, etc).

The target of estimation is the surface elevation (= depth height) z = {zi : i E SP}

which is a discrete version of the surface function z = z(u),u = (Ul ,U2) E JR2 above the

image plane. Often, the albedo p = {pi} and the light source direction S are unknown and

need to be estimated simultaneously with z. The depth z = {zi} can be recovered from
an estimation of the unit normals N = {Ni : i E S} provided that the estimated normals

satisfy the integrability condition which corresponds to a discrete version of z,,,2 = Z,2,,, -

The procedure for estimating N = {N7i} (and hence depth) is based on stochastic

regularization [17,23,29] via Gibbs distributions designed to capture our a priori expecta-

tions about surfaces: surfaces are locally smooth (and hence, N = {Ni} and curvature

change locally smoothly), while orientation jumps along surface discontinuities or occluding

boundaries. In addition to the process N = {Ni : i E S'}, we introduce an auxiliary "edge"

process XE as in previous work [17,231 on restoration. The process XE is indexed by the

dual lattice S' of SP, i.e. XE = {XE : t E SE} = {X Eij> : i,j E S", Ji - JI = 1}, and a
"site" t =< ii >E SE corresponds to a putative edge between pixels i and j. It is abinary
process with XE = 1 (resp. 0) indicating presence (resp. absence) of an edge at t E St.

The joint process (N,xE) is chosen to be a Markov Random Field (MRF) with dis-

tribution (the prior)

ir(N,zE) = 1 _U(N,xz)Ze

where the energy function U(N,x E) consists of two terms

U(N,XE) = U,(N,XE) + U2(XE) (5.3)

U, reflects our expectations about interactions between normals and edges, while U2 re-

flects boundary "organization". Both terms are constructed in terms of "local interactions"
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corresponding to some neighborhood system. More specifically, in our experiments U, was

chosen to be

U1(N,<E)= 6 (1- )
<ij>

+02 <(I-a<>)¢([Al,- NI) (5.4)
liji

where 01,02 > 0, [i,j] denotes nearest-neighbor diagonals (i.e. Ii - jJ = vi), and

if EXE=I or X =

or •o 1 or x 1ai~j =2 o NzK- t3 t4

0 ,otherwise

where i,j,tx,t 2,t 3 ,t 4 are as in Figure 5.1 or in its rotation by 7r/2.

0 + tl 0 j

+ t4 + t2

o i + t3  0

Figure 5.1.

The function 0(-) was chosen to be 0b(1N]i - 9ij) = -1 + •IN,- NIj2 1 N2 ? N.

Because of the constraint JI1ij = 1, the prior resulting from this choice of 0 is non-Gaussian

even if 02 = 0 and xE = 0. In fact, model (5.3) has worked well [48] in some cases even

without the edge process x

The term U2(xE) is designed to capture our generic expectations about discontinuities

(and occluding boundaries): most physical points are away from discontinuities; discontinu-

ities are usually persistent (no isolated or abandoned segments); discontinuity intersections,

sharp turns, etc, are relatively unlikely. For specific choices of U2 we refer to [17, §4.3].

Some of the above regularity properties may also be captured by "penalty functions" [20],

a procedure which may be useful for textured surfaces.

In addition to the data (5.1) or (5.2), and the prior induced by (5.3), we have a

deterministic constraint VI(N) = 0 (see [26]) corresponding to the integrability condition.

Assuming that S and p are known, the estimation of N = {Ni} is reduced to the following

constrained optimization problems: In the case of observable XP (i.e. no degradation), we

minimize (5.3) subject to the constraints VI(N) + V2(N) = 0 where V2(N) = ics, IJxP -
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R(]Vi)I2. In the presence of degradation, (5.2) induces a conditional probability P(YIN) =

P(YIX'). This together with the prior yield the posterior distribution P(NIY). Then N

is estimated by maximizing P(NIY) subject to the constraint VI(N) = 0. This procedure

can be extended [48] to estimate also g and p when p is constant through the image.

Figure 5.2 shows an experiment with an egg imaged under uncontrolled illumination

(using a desk lamp). The surface of the egg was assumed matte. No degredation was

considered. The algorithm-a combination of constrained annealing [18] and Iterated Con-

ditional Mode (ICM) [7]-estimated in addition to N, the albedo p and an effective light

source direction S: (a) original image 64 x 64, (b) image reconstructed from the estimated

N, S, and p, (c) reconstructed egg illuminated from the x-direction, (d) reconstructed egg

illuminated from the y-direction.

6. TEXTURE ANALYSIS

Texture is a dominant feature in remote sensing and other data, and texture discrimination

is important in many applications including: determining the spatial distribution, size and

shapes of ice floes in the ocean; monitoring polar ice cover; analyzing satellite data for re-

source classification, crop assessment, weather prediction, and geologic mapping; industrial

quality control as, for example, in the inspection of silicon wafers where low magnifica-

tion views of memory arrays appear as highly structured textures; inferring 3D geometric

properties of surfaces ("shape-from-texture").

Statistical methods for texture discrimination in remote sensing are prevalent [17,46].

However, until recently most techniques employed conventional methods such as principal

component analysis, in which pixels are classified individually and independently. More

recently [11,12,13,16] there has been an increasing emphasis on spatial methods (based on

Markov and other random fields) which reflect the presence of spatial coherence: e.g. crops

or vegetation are expected to grow in large locally random but "globally" homogeneous

regions.

In [19,20,22], we have developed three complimentary procedures for texture discrimi-

nation based on "label models" which involve two coupled processes: the grey-level intensity

process and the label process. In the first procedure [19,22] the coupled process is a two-

tiered MRF : one level for the label (or region) process, a simple Ising type process, and the

other level for the intensity process with a specified distribution conditional on the region

labels. These conditional distributions (also MRF) are the "models" of specific textures.

These are properly designed parametric models whose parameters are estimated from one
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Figure 5.2. Egg i mages. (a) Original, (b) Reconstructed from estimated shanpe

information; (c) Reconstructed, illuminated from tile right; (d) Reconstruct(-(]
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textures. Partitioning and boundary placements are driven by spatial statistics features se-

lected in terms of the Kolmogorov-Smirnov distance applied either to raw data ("first-order
statistics") or to transformed data corresponding to higher order statistics (e.g. window

means, range, variance, "directional residuals", etc); they also involve "hard constraints"

which penalize unwanted or "forbidden" label configurations.

Figures 6.1-6.3 show texture discrimination experiments with the first, second, and

third procedure, respectively. Figure 6.1 involves four textures: wood, carpet, cloth, and

plastic; the left panel is the textured scene, and the right panel shows the segmentation

with texture labels coded by grey bevel. Figure 6.2 is SAR image of ice floes in the ocean;

three partition labels were used, one for water and two (dark and light) for ice: (a) original

image 512 x 512, (b) shows the evolution of stochastic relaxation; the upper left panel

is the random starting configuration and the bottom right is the final configuration. The

original for Figure 6.3 is the same as in Figure 6.2; the Figure shows sixteen "snapshots" of

stochastic relaxation for the boundary model-every third sweep from a sequence of sweeps.

Figure 6.1. Segmentation of four textures;

wood, carpet, and cloth on a plastic background

These models are adequate for texture discrimination, but not for texture synthesis.

For the purpose of texture synthesis, we have explored (see [1], [2]) the following class of

MRF models:

U(x) • A(i - j)xixj + E p(xi;A), xi E R? (6.1)
2i~JEs 

iES

where A is a positive definite matrix with A(i) = A(-i), and p(ý, A), E R? is a polynomial,

p(ý, A) = A\ + A2W + ... + A22Mý 2M, of even degree with A2M > 0. Figure 6.4 shows a

wood like texture generated from a MRF corresponding to (6.1) with a quartic polynomial
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Figure 6.2. Segmentation of SA. image of ice floes, partition model

Figure 6.3. Segmentation of SAR image of ice floes, boundary model
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p(�; A), and A(i - j) = 0 for ji - ii > 2 (the model had exactly nine parameters). The

first term in (6.1) corresponds to a Gaussian distribution. Gaussian distributions have been

used successfully for generating textures in [91* A large class of models of the form (6.1)

can be defined [1] at all levels of resolution including the continuum. This may be useful

for scale and rotation invariant segmentation of textures.

Figure 6.4. Wood-like texture generated by MRF
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